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INTRODUCTION

A chapter was prepared for publication in the next edition of Advances in Radiation

Biology entitled, UThe Radiological Implications of Statistical Variations in Energy Deposition

by Ionizing Radiations."

The completed multiwire proportional counter has undergone preliminary testing in

the laboratory using a 212Po alpha source. All aspects of its performance seem to be

satisfactory.

Studies of the minimum detectability which can be achieved by the digitized x-ray

fluoroscopy system have been completed. The studies were conducted using thick water

phantoms (10 cm, 15 cm, and 20 cm). These limits were determined for aluminum, air,

and three concentrations of Renografin-60 (10%, 25%, and 50%).

Pattern recognition programs have been developed for measurement of gall -stone

volumes, bronchi diameters, and vessel diameters. These can be used either with film or

by direct processing of the video signal derived from a fluoroscopic screen.

A large flat-screen (14" x 17") fluoroscopic image intensification (x-ray) system

has been built and undergone preliminary testing. Performance and sensitivity is better

than conventional systems.

One experimental run was made utilizing the UCLA medical cyclotron for determining

DNA damage from proton irradiations. The beam was calibrated using an extrapolation

chamber so that direct comparison of these results with those obtained using x-rays can be

made on the basis of macroscopic exposures. These experiments are designed to test a

radiobiological model incorporating stochastic fluctuations of energy deposition for passage

of heavy charged particles through biologically significant sites.
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RESEARCH SUMMARY

I. Microdosimetry

The chapter, "The Radiological Implications of Statistical Variations in Energy

Deposition by Ionizing Radiations", to be published in the new edition of ADVANCES IN

RADIATION BIOLOGY -i Appendix I' b should appear in June 1974.

This chapter was written to emphasize the concepts and results developed under the

sponsorship of this grant in contrast to the more traditional dosimetric concepts.

One rather large area requires detailed experimental study to complete the physical

picture. This is a detailed study of the production of and contributions due to secondary

particle production generated by the passage of the primary radiation through the site of

interest. To carry out these experiments a multiwire proportional counter capable of

simulating volumes corresponding to biological sites has been constructed and tested in

the laboratory. Initially, studies using radioactive sources will be continued in the laboratory.

Following these, we intend to carry out studies using the UCLA cyclotron which will

provide; 27 MeV 3He, 22 MeV protons, 22 MeV a particles, and 11 MeV deuterons.

If sufficient funding is available higher energy particle beams at SREL and at Berkeley

will be used.

The experimental results using 45 MeV protons comparing frequency distributions of

energy deposition for bone and muscle were included as Appendix A in our semi-annual

report.

2. Radiation Biology

Our cooperative experimental program involving Dr. K. Wheeler of UCSF has been

initiated. Proton irradiations at the UCLA cyclotron have been carried out. These are

designed to study the ratio of non-reparable to reparable damage in DNA as a function

of different energy deposition patterns generated by x rays vs., heavy fast charged particles.



Preliminary results indicate considerable differences exist and these are what would be

predicted from the energy deposition distribution functions.

3. Radiobiological Models

The work done on such models is presented in parts 5 and 6 of Appendix 1.

4. Electronic Radiography

The use of the electronic radiography system for direct fluoroscopic tomography

and for the synthesis of multiple planes has been described in Appendix B of the semi-annual

report. The use of this system for cutting body sections through organs in motion should be

of particular value to the NASA for cardiovascular studies.

A complete study of the digitized system for detection and quantitation of small

changes in tissue masses has been undertaken. The early work was described in Appendix C

of the semi-annual report.

Another set of experiments was designed to determine the characteristics of the

system's response to split fields having different contrast levels and to determine the

minimum detectable contrast levels between the halves under realistic clinical situations.

The experimental set-up is shown in Fig. 1. The target-to-tabletop distance was 40 inches.

The dimensions of the water phantom were 50 cm x 50 cm x 50 cm. In all experiments the

field size was 10 cm x 10 cm at the tabletop. The absorbers or air cavities were placed so

as to cover half of the x -ray field and centered at the midpoint of the water scatterer.

The water depth ranged between 10 cm and 20 cm, thereby introducing scattering comparable

to that which would be present in a clinical situation. The contrasts calculated are all

referred to the unperturbed half of the field. Experiments were conducted using aluminum

(as an approximation for bone), Renografin-60, and air.
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The results are shown in Figs. 2 through 5. The values of the ordinate were computed

by selecting two adjacent areas occupying a tabletop area of 1.5 cm2 (320 picture elements)

each having its horizontal center line at the center of the x-ray field and interior edges 1 cm

from the absorber or cavity edge.

Fig. 2 shows the response curves obtained for aluminum absorbers. A was obtained

using 120 kVp and a water depth of 20 cm. B represents the data for 100 kVp and 15 cm

of water. C was obtained Ising 90 kVp and 10 cm of water.

Fig. 3 shows the results for various concentrations of Renografin-60. A is for a

10 percent solution, B for 25 percent, and C for 50 percent. The thickness of the water

phantom was 20 cm and the tube potential 120 kVp. The Renografin-60 solutions were

contained in plexiglass containers having a thickness of 0.25". These were supported on a

platform of 0.25" polystyrene. Equal thicknesses of these materials were placed in the other

half of the field and the water level reduced accordingly.

Figs. 4 and 5 show the results obtained with air cavities. The geometry was identical

to that used to obtain the Renografin-60 data. Fig. 4 shows the complete response while

Fig. 5 shows the data obtained for thin cavities on an expanded scale. The data in Fig. 4

was obtained using 120 kVp and 20 cm water. Curve A, in Fig. 5 is the same data plotted

on an expanded scale, while B is that obtained using a potential of 100 kVp and 20 cm water.

Using the slope of the initial straight portions of these curves (or straight lines), one

can obtain a value for the minimum degree of contrast that can be reliably differentiated in

each case. We choose to use a value of two standard deviations to determine these. The

results are shown in Table I. In all cases less than 1 mm of material can be detected even in

the presence of a large scattering volume. In previous work we have found that the addition

of a 12:1 moving grid was found to improve the contrast of the image substantially.
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However, in clinical use this would, of course, increase the patient dose. We have not

measured this effect quantitatively.

In all cases the response, when treated as contrast, shows a linear response with

absorber thickness up to considerable thicknesses. This is not a case of small absorber

thickness giving a truly exponential response and being approximated by a linear function.

The data does not plot linearly when treated semi-logarithmically. If we ignore scattering

and other perturbing factors such as curvature of the input screen and inverse square effects,

the conatrast or relative video signal levels are given by:

/ 2 t - 1 t
C 1 - e e (1)

where; A2 = attenuation coefficient of water

I1 = attenuation coefficient of absorber

t = absorber thickness.

For small t, this reduces to:

C = l t ( 1 + A2 t) - Cp2 t (2)

At larger thicknesses the response does not remain linear but decreases in the case of

absorbers which are more dense or have a greater linear absorption coefficient than water

and increases more rapidly with cavity size in the case of air. In the manner in which our

data was computed Equation (1) becomes for air cavities,

C = 1 - 2 t eI (11)
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and for small cavities,

C = P2 t (1 - Alt) - Pit (21)

where; 1 = attenuation coefficient of air

t = cavity thickness

The minimum detectable contrast seems to be mainly limited by scatter and electronic

noise. Both of these are amenable to improvements in the experimental set-up. However,

decreasing scatter by the addition of a grid with a higher ratio would involve an increase

in patient dose. Signal-to-noise ratios can be increased by any number of electronic

improvements in circuitry, system configuration, and digitization equipment.

The linearity of the system's response to changes in contrast over a rather large

range of clinically interesting values will tend to make quantitative determinations simple,

accurate, and allow extrapolation of experimental data for other calculations. The values

given in this paper would certainly be different using another system or with a change in

components. However, we feel the values given, the form of the system's response, and

minimum detectable contrasts are typical of what can be expected from this type of system.



7

CONCLUSIONS

1. The response of digitized fluoroscopic imaging systems is linear with contrast

over a rather wide range of absorber and cavity thicknesses.

2. Contrast changes associated with the addition of aluminum, iodine containing

contrast agents and air of thicknesses 1 mm or less can be detected with a 95% confidence

level.

3. The standard deviation associated with such determinations using clinically

available x-ray generators and video disc recording is less than 1 percent.

A large flat screen x-ray image intensifier has been constructed and some preliminary

results obtained. Sensitivity achieved makes dose reduction a factor often greater than

previously reported for our system using a conventional x-ray image intensifier. A paper

describing these results and a comparison of the images obtained with that of the conventional

device will appear shortly in the bulletin of the SPIE.
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FIGURE CAPTIONS

iWater phantom used to determine system response to variations in contrast

levels.

Fig. System response to varying contrast levels produced by aluminum absorbers.

A: 120 kVp, 20 cm water scatterer.

B: 160 kVp, 15 cm water scatterer.

C: 90 kVp, 10 cm water scatterer.

Fig. 3 System response to varying contrast levels produced by several concentrations

of Renografin-60. The water depth was 20 cm and the tube potential 120 kVp.

A: 10 percent concentration;

B: 25 percent, and

C: 50 percent.

Fig. 4 System response to varying contrast levels produced by air cavities when

introduced into 20 cm of water using 120 kVp.

Fig. 5 System response to varying contrast levels produced by air cavities when

introduced into 20 cm of water.

Curve A, is for 120 kVp (same data as used in Fig. 4), and

Curve B, is for 100 kVp.
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TABLE I

MINIMUM DETECTABLE CONTRAST LEVELS (Cmi )min

Material Water Depth Tube Potential Standard Deviation Thickness of Material

(cm) (kVp) (percent) (mm) Corresponding to
Cmn at 2 a
min

Al 10 90 0.849 0.6

Al 15 100 0.465 0.5

Al 20 120 0.723 0.6

10%, Renografin-60 20 120 1.10 0.8

25%, Renografin-60 20 120 0.578 0.2

50%, Renografin-60 20 120 0.828 0.1

Air 20 100 0.797 0.4

Air 20 120 0.802 0.9


